Memory Dynamics in Attractor Networks
نویسندگان
چکیده
As can be represented by neurons and their synaptic connections, attractor networks are widely believed to underlie biological memory systems and have been used extensively in recent years to model the storage and retrieval process of memory. In this paper, we propose a new energy function, which is nonnegative and attains zero values only at the desired memory patterns. An attractor network is designed based on the proposed energy function. It is shown that the desired memory patterns are stored as the stable equilibrium points of the attractor network. To retrieve a memory pattern, an initial stimulus input is presented to the network, and its states converge to one of stable equilibrium points. Consequently, the existence of the spurious points, that is, local maxima, saddle points, or other local minima which are undesired memory patterns, can be avoided. The simulation results show the effectiveness of the proposed method.
منابع مشابه
Attractor Neural Networks and Spatial Maps in Hippocampus
Attractor neural network theory has been proposed as a theory for long-term memory. Recent studies of hippocampal place cells, including a study by Leutgeb et al. in this issue of Neuron, address the potential role of attractor dynamics in the formation of hippocampal representations of spatial maps.
متن کاملBreeding novel solutions in the brain: a model of Darwinian
The fact that surplus connections and neurons are pruned during Background development is well established. We complement this selectionist picture by a proof-of-principle model of evolutionary search in the brain, that accounts for new variations in theory space. We present a model for Darwinian evolutionary search for candidate solutions in the brain. : We combine known components of the brai...
متن کاملBreeding novel solutions in the brain: a model of Darwinian
The fact that surplus connections and neurons are pruned during Background development is well established. We complement this selectionist picture by a proof-of-principle model of evolutionary search in the brain, that accounts for new variations in theory space. We present a model for Darwinian evolutionary search for candidate solutions in the brain. : We combine known components of the brai...
متن کاملBreeding novel solutions in the brain: a model of Darwinian
The fact that surplus connections and neurons are pruned during Background development is well established. We complement this selectionist picture by a proof-of-principle model of evolutionary search in the brain, that accounts for new variations in theory space. We present a model for Darwinian evolutionary search for candidate solutions in the brain. : We combine known components of the brai...
متن کاملSynaptic Potentiation Facilitates Memory-like Attractor Dynamics in Cultured In Vitro Hippocampal Networks
Collective rhythmic dynamics from neurons is vital for cognitive functions such as memory formation but how neurons self-organize to produce such activity is not well understood. Attractor-based computational models have been successfully implemented as a theoretical framework for memory storage in networks of neurons. Additionally, activity-dependent modification of synaptic transmission is th...
متن کاملMemory Dynamics in Attractor Networks with Saliency Weights
Memory is a fundamental part of computational systems like the human brain. Theoretical models identify memories as attractors of neural network activity patterns based on the theory that attractor (recurrent) neural networks are able to capture some crucial characteristics of memory, such as encoding, storage, retrieval, and long-term and working memory. In such networks, long-term storage of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2015 شماره
صفحات -
تاریخ انتشار 2015